albookerk



СОДЕРЖАНИЕ

Глава 8. МЕТОДЫ ИЗУЧЕНИЯ И ИЗМЕРЕНИЯ УСТОЙЧИВОСТИ УРОВНЕЙ РЯДА И ТРЕНДА
Устойчивость временного ряда - понятие многоплановое. Его следует рассматривать с двух позиций:
• устойчивости уровней временного ряда;
• устойчивости тенденции (тренда).
Вопрос определения понятия устойчивости невозможно решить без статистической теории динамического ряда, разработанной известными статистиками A.M. Обуховым, Н.С. Четвериковым, Альб. Л. Вайнштейном, С.П. Бобровым, Б.С. Ястремским. Согласно этой теории статистический показатель содержит в себе элементы необходимого и случайного. Необходимость проявляется в форме тенденции динамического ряда, случайность - в форме колебаний уровней относительно кривой, выражающей тенденцию. Тенденцией характеризуется процесс эволюции. В явном виде невозможно видеть все причины, порождающие тенденцию (тренд). Полное разделение элементов случайного и необходимого существует только в виде научной абстракции.
Расчленение динамического ряда на составляющие элементы - условный описательный прием. Тем не менее, несмотря на взаимозависимость тенденции и колеблемости, решающим фактором, обусловливающим тенденцию, является целенаправленная деятельность человека, а главной причиной колеблемости - изменение условий жизнедеятельности. Исходя из вышеизложенного можно отметить следующее. Устойчивость не означает обязательное повторение одинакового уровня из года в год; такое понимание устойчивости приравнивало бы ее к застойному состоянию изучаемого явления. Слишком узким и жестким было бы понятие устойчивости ряда - как полное отсутствие в динамическом ряду всяких колебаний, так как полностью устранить влияние случайных факторов на показатель невозможно. Сокращение колебаний уровней ряда -одна из главных задач при повышении устойчивости, но этим она не исчерпывается, необходимо развитие явления. Отсюда и следует, что устойчивость временного ряда - понятие не простое, а многоплановое.
Устойчивость временного ряда - это наличие необходимой тенденции изучаемого статистического показателя с минимальным влиянием на него неблагоприятных условий.
Из этого вытекают основные требования устойчивости:
• минимизация колебаний уровней временного ряда;
• наличие определенной, необходимой для общества тенденции изменения.
Устойчивость временного ряда можно оценивать на различных явлениях. При этом в зависимости от явления будут меняться показатели, которые используются в качестве форм выражения существа исследуемого процесса, но содержание понятия устойчивость будет оставаться неизменным.
8.1. Методы измерения устойчивости уровней ряда
Наиболее простым, аналогичным размаху вариации при измерении устойчивости уровней временного ряда, является размах колеблемости средних уровней за благоприятные и неблагоприятные, в отношении к изучаемому явлению, периоды времени:

(8.1)
Причем к благоприятным периодам времени относятся все периоды с уровнями выше тренда, к неблагоприятным - ниже тренда (однако, например, при изучении динамики производительности труда если это трудоемкость, то все должно быть наоборот).
Отношение средних уровней за благоприятные периоды времени к средним уровням за неблагоприятные / также может служить показателем устойчивости уровней. Чем ближе отношение к единице, тем меньше колеблемость и соответственно выше устойчивость. Назовем это отношение индексом устойчивости уровней динамических рядов и обозначим:

(8.2)
- отношение средней уровней выше тренда к средней уровней ниже тренда (при тенденции роста).
Например, по данным табл. 5.7 индекс устойчивости уровней валового сбора чая в Китае за 1978-1994 гг. составил 1,02.
При измерении колеблемости уровней исчисляются обобщающие показатели отклонений уровней от тренда за исследуемый период.
Основными абсолютными показателями являются среднее линейное и среднее квадратическое отклонения (см. гл. 6, формулы 6.4; 6.5):
среднее линейное отклонение

(8.3)
среднее квадратическое отклонение

(8.4)
где - фактический уровень;
- выровненный уровень;
п — число уровней;
р - число параметров тренда;
t - номера лет (знак отклонения от тренда).
Эти показатели выражаются в единицах измерения анализируемых уровней и не могут служить для сравнения колебаний различных динамических рядов. Сравнение средних линейных и квадратических отклонений по базам скольжения при многократном аналитическом выравнивании дает информацию о снижении или о повышении устойчивости уровней за период исследования. Аналитическое выравнивание a(t) и Sy(t) и расчет параметров уравнения их трендов позволяют определить количественные характеристики изменения абсолютной колеблемости во времени: среднегодовое изменение, темп изменения. Снижение колеблемости во времени будет равнозначно повышению устойчивости уровней (см. разд. 6.4).
Для характеристики устойчивости (неустойчивости) Д. Бланфорд и С. Оффат рекомендуют следующие показатели [23]:
Процентный размах (Percentage Range) - PR:



(8.5)
PR оценивает разность между максимальным и минимальным относительными приростами в процентах.
2. Показатель скользящие средние (Moving Average) - МА, который оценивает величину среднего отклонения от уровня скользящих средних:

(8.6)

3. Среднее процентное изменение (Average Percentage Change) - АРС, которое оценивает среднее значение абсолютных величин относительных приростов и квадратов относительных приростов:

(8.7)
Бланфорд и Оффат, анализируя вышеперечисленные коэффициенты, отмечают их хорошую согласованность относительно коэффициента Спирмена.
Относительные показатели колеблемости, чаще всего используемые в статистике, вычисляются делением абсолютных показателей на средний уровень за весь изучаемый период (см. разд. 6.2.2):
коэффициент линейной колеблемости



(8.8)

(8.9)
Эти показатели отражают величину колеблемости в сравнении со средним уровнем ряда. Они необходимы для сравнения колеблемости двух различных явлений и чаще всего выражаются в процентах. Если - коэффициент колеблемости, то величину

(8.10)
называют коэффициентом, устойчивости. Такое определение коэффициента устойчивости интерпретируется как обеспечение устойчивости уровней ряда относительно тренда лишь в (100 - ) случаях. Если Ку составил 0,9, это означает, что среднее колебание составляет 10% среднего уровня. Однако вероятность того, что отдельное колебание (т.е. отклонение от тренда в отдельном периоде) не превзойдет средней величины колебаний Sy(t), составляет лишь 0,68, если распределение колебаний по их величине близко к нормальному.
Например (см. гл. 6, разд. 6.2.2), коэффициент колеблемости урожайности зерновых культур во Франции за 1970-1995 гг. составил 6,9%, следовательно, коэффициент устойчивости уровней равен 93,1%.
8.2. Методы измерения устойчивости тенденции динамики
Наиболее простым показателем устойчивости тенденции временного ряда является коэффициент Спирмена Кр [3, с. 39]:

(8.11)
где d - разность рангов уровней изучаемого ряда (Ру) и рангов номеров периодов или моментов времени в ряду (Рt);
п - число таких периодов или моментов.
Для определения коэффициента Спирмена величины уровней изучаемого явления у^ нумеруются в порядке возрастания, а при наличии одинаковых уровней им присваивается определенный ранг, равный частному от деления суммы рангов, приходящихся на эти значения, на число этих равных значений. При наличии дробных рангов необходима поправка к формуле Спирмена:

(8.12)
j - номера связок по порядку (см. нижнюю формулу);
Аj - число одинаковых рангов в j -й связке (число одинаковых уровней).
При малой вероятности совпадения уровней и достаточном их числе эта поправка несущественна.
Коэффициент рангов периодов времени и уровней динамического ряда может принимать значения в пределах от 0 до ±1.
Интерпретация этого коэффициента такова: если каждый уровень ряда исследуемого периода выше, чем предыдущего, то ранги уровней ряда и номера лет совпадают, Кр = +1. Это означает полную устойчивость самого факта роста уровней ряда, непрерывность роста.
Чем ближе Кр к +1, тем ближе рост уровней к непрерывному, выше устойчивость роста. При Кр = 0 рост совершенно неустойчив. При отрицательных значениях чем ближе Кр к -1, тем устойчивее снижение изучаемого показателя. В рассмотренном ранее ряду динамики урожайности зерновых во Франции за 1970-1995 гг. коэффициент Спирмепа составил 95,62%.
Коэффициент устойчивости роста (Кр) можно получить и по другой формуле.

(8.13)
Этот вариант расчета несколько сокращает вычисления. Коэффициент Спирмена здесь применен в совершенно новой функции, и его нельзя трактовать как меру связи изучаемого явления со временем. Преимуществом коэффициента корреляции рангов как показателя устойчивости является то, что для его вычисления не требуется аналитическое выравнивание динамического ряда. Это сложная и чреватая ошибками стадия анализа динамики.
Следует иметь в виду, что даже при полной (100%) устойчивости роста (снижения) в ряду динамики может быть колеблемость уровней, и коэффициент их устойчивости будет ниже 100%. При слабой колеблемости, но еще более слабой тенденции, напротив, возможен высокий коэффициент устойчивости уровней, но близкий к нулю коэффициент устойчивости изменения.
Например, коэффициент устойчивости уровней урожайности картофеля в России за 1982-1997 гг. составил 0,919, а коэффициент устойчивости (снижения) тренда - только -0,612. Устойчивого тренда нет.
Обычно эти показатели изменяются совместно: большая устойчивость уровней наблюдается при большей устойчивости изменения.
Недостатком коэффициента устойчивости роста Кр является его слабая чувствительность к изменениям скорости роста уровней ряда, он может показать устойчивый рост при незначительно отличающихся от нуля приростах уровней.
В качестве характеристики устойчивости изменения можно применить индекс корреляции:

(8.14)
где - уровни динамического ряда;
— средний уровень ряда;
- теоретические уровни ряда.
Индекс корреляции показывает степень сопряженности колебаний исследуемых показателей с совокупностью факторов, изменяющих их во времени. Приближение индекса корреляции к 1 означает большую устойчивость изменения уровней динамического ряда.
Сравнение индексов корреляции по разным показателям возможно лишь при условии равенства числа уровней. Так, с ростом длины периода при том же среднем приросте ( ), той же абсолютной (Sу(t) и относительной колеблемости ( ) он автоматически увеличивается из-за накопления изменений за счет тренда.
8.3. Комплексные показатели (критерии) устойчивости
Сущность комплексных показателей заключается в определении их не через уровни динамического ряда, а через показатели их динамики. Так, М.С. Каяйкиной [9] бь:л предложен один из таких показателей (К). Он определяется как отношение среднего прироста линейного тренда = а + b , т.е. параметра b к среднему квадратическому отклонению уровней от тренда Sу(t):


(8.15)
Чем больше величина К, тем менее вероятно, что уровень ряда в следующем периоде будет меньше предыдущего. Например, если считать, как и ранее, что распределение колебаний близко к нормальному, то при К = 1 вероятность того, что отклонение от тренда будет не больше прироста (по модулю), составляет F(1) 0,68. Поскольку отклонения от тренда разных знаков одинаково вероятны, можно сказать, что вероятность того, что уровень следующего года (месяца, дня) будет ниже, чем предыдущего, составит: 0,5 - F(t):2 = 0,5 - 0,34 = 0,16. Если же показатель К составляет только 0,25, то вероятность снижения уровня следующего периода по сравнению с предыдущим составит: 0,5 - F(0,25) = 0,5 - 0,1974:2 = 0,4013. При отрицательном b вероятность снижения уровня становится больше 0,5: так, если b = - 0,4 Sy(t), т.е. K= -0,4, вероятность снижения следующего уровня такова:

Как видим, при К = -0,4 тенденция снижения уровней еще довольно неустойчива.
Рассмотрим показатели такого же рода для экспоненциального и параболического трендов. Основным параметром, характеризующим динамику по экспоненте, служит средний темп роста (коэффициент роста уровней в разах) k уравнения экспоненты:
- величина отвлеченная, притом всегда положительная (знакопеременные уровни здесь не рассматриваются).
Недопустимо сопоставлять темпы с абсолютным показателем колеблемости Sy(t), логично сравнить темпы роста уровней по экспоненциальному тренду с темпами изменения колеблемости. Для этого необходимо построить динамический ряд величин S'y(t) хотя бы скользящим способом и выравнивать его тоже по экспоненте, чтобы определить величину среднегодового темпа (в разах) величины колебаний, т.е. показатель KS(t). Так как для одноразового надежного вычисления показателя колеблемости уже необходимо иметь не менее 11-15 уровней, то для получения динамического ряда Sy(t) и его среднегодового темпа изменения необходим динамический ряд исходных уровней значительной длины (не менее 11-15 плюс еще 9-11), т.е. более 20 уровней, а лучше около или более 30. Далеко не всегда можно получить такой длинный ряд достаточно однокачественных уровней с единым трендом.
Сопоставляя темпы роста уровней ряда с темпами изменения колеблемости, получим показатель опережения:

(8.16)
Если , это свидетельствует, что уровни ряда в среднем растут быстрее колебаний (или снижаются медленнее колебаний). В таком случае, как понятно без доказательства, коэффициент колеблемости уровней будет снижаться, а коэффициент устойчивости уровней повышаться. Если наоборот, колебания растут быстрее уровней тренда и коэффициент колеблемости растет, а коэффициент устойчивости уровней снижается. Таким образом, величина Оkэ определяет направление динамики коэффициента устойчивости уровней.
Параболический тренд имеет два динамических параметра: среднегодовой прирост b и половину ускорения прироста с. Величина b в параболе не является константой, и для построения показателей комплексной устойчивости W нужно взять среднюю за весь ряд величину . В остальном интерпретация та же, что и для прямой. Второй показатель - половину ускорения с или ускорение прироста 2с - логично сопоставлять уже не с самой величиной колеблемости Sу (t), а с ее среднегодовым приростом
bSу(t), полученным по достаточно длинному ряду путем выравнивания показателей Sу (t), скользящих или следующих друг за другом. Имеем показатель

(8.17)
Интерпретация показателя Ос такова: если , значит, положительное ускорение (прирост абсолютного прироста уровней) больше, чем прирост среднего квадратического отклонения от тренда. Значит, отношение прироста уровней к среднему отклонению от тренда станет увеличиваться, т.е. показатель К будет возрастать, что свидетельствует о повышении устойчивости динамики тренда. Если , значит, колебания растут сильнее, чем происходит прирост уровней, показатель устойчивости К будет снижаться.
Это общее положение, однако требует конкретизации, так как числитель и знаменатель показателя Ос могут принимать как положительные, так и отрицательные значения. Следовательно, может иметь место восемь возможных сочетаний: четыре - по знакам и два - по величине. Рассмотрим интерпретацию каждого из восьми возможных сочетаний:

Прирост уровней ряда растет, колебания тоже растут, но медленнее, в результате К увеличивается, т.е. устойчивость тенденции возрастает. Уточним, что при этом не обязательно растут и уровни ряда, так как параметр может быть и отрицательным, так что часть периода уровни ряда могут снижаться.

Хотя прирост уровней возрастает (ускоряется), но колеблемость растет еще быстрее, а, значит, показатель устойчивости тенденции K снижается. Это менее благоприятный тип динамики, чем случай 1.
- очевидная ситуация. Эта комбинация означает, что прирост уровней растет, а колеблемость снижается. Ясно, что при этом показатель устойчивости тенденции К возрастает.
- нереальная комбинация, третье неравенство противоречит двум первым.
- также нереальное сочетание по той же причине.
- очевидная ситуация. Это означает, что прирост уровней снижается, а колебания возрастают. Естественно, показатель устойчивости тенденции уменьшается и за счет знаменателя, устойчивость падает, это самый неблагоприятный тип динамики производства относительно его устойчивости.

Отсюда следует, что прирост уровней сокращается, но медленнее, чем колеблемость, так как неравенство 2с > bSу(t) понимается по алгебраической величине, а не по модулю, т.е., например, с = -0,05, а 2с > bSу(t) = -0,13, имеем: 2с = -0,1, что больше, чем -0,13. В таком случае показатель устойчивости тенденции К будет возрастать, хотя уровни ряда либо тоже снижаются, либо растут с замедлением, так что для производства это не самый благоприятный тип динамики.
- также понимается по алгебраической величине.
Прирост уровней снижется быстрее, чем колебания, показатель устойчивости К снижается, тип динамики неблагоприятный, хотя и не столь сильно, как тип 6.
Итак, исключив два нереальных сочетания из восьми, получим при параболическом тренде шесть типов динамики устойчивости, из них типы 1 и 3 благоприятные для производства, 2 и 7 благоприятны в одном отношении, но неблагоприятны в другом, а типы 6 и 8 явно неблагоприятны относительно устойчивости.
Еще раз подчеркнем, что для надежного определения всей предлагаемой системы показателей устойчивости при параболическом тренде необходим достаточно длинный динамический ряд - не менее 20 уровней при едином типе тенденции. При более коротких рядах следует ограничиться показателями, не требующими оценки тенденции динамики колебаний bSу(t).



СОДЕРЖАНИЕ